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EFFECT OF THE MOTION INSIDE A LIQUID DROP ON ITS RISE IN 

A VERTICAL TUBE 

P. K. Volkov UDC 532.529.6 

I. Introduction. In treating the rise of bubbles in a liquid it is usually assumed 
that the medium inside the bubble is at rest and the state of the medium can be described 
by a single constant: the thermodynamic pressure pg of the gas inside the bubble. For gas 
or air bubbles rising in a heavy liquid this assumption is justified, since the ratios of 
the densities and viscosities of the gas and liquid are small and so the medium inside the 
bubble is light and the friction of the gas against the liquid on the surface of the bubble 
is small and has a negligible effect on the motion. This assumption is supported by numerous 
experiments. However for vapor bubbles, such as in Freon, the ratio of the densities is of 
order 0.i and the use of the bubble model can lead to inaccurate results. 

2" Statement of the Problem and Solution Algorithm. We assume that the medium inside 
the bubble is a viscous incompressible liquid (a liquid drop moving in a different liquid) 
with Pl/P2 = 0.i. We consider hindered motion of the liquid drop in a tube with I = 0.8. 
Here Pl and p= are the densities of the media inside and outside the liquid drop; I = a/Rk, 
where a is the radius of a sphere whose volume is equal to that of the liquid drop and R k is 
the radius of the tube. Since the liquid drop occupies more than half of the tube cross sec- 
tion, the flow of the liquids inside and outside the drop are determined by the nature of the 
flow through the narrow gap between the wall of the tube and the surface of the drop. For 
small I the effect of the tube wall is small, as is shown by calculations of rising bubbles 
[I], but its effect increases with I. 

The motion inside and outside the liquid drop is described by the Navier-Stokes equa- 
tions. Consistency conditions must be satisfied on the interface F between the two liquids 
[2]. The velocities and the tangential components of the stress must be equal across the 
interface, while the normal component of the stress has a jump equal to the magnitude of the 
capillary pressure. The algorithm for obtaining the numerical solution of the problem is 
constructed in analogy to [i] and has been described in detail in [3]. The results of a 
series of calculations are sunmnarized in Fig. 1 in terms of the coordinates R o = a/(v~/g) I/~, 
R v = a/(o/p2g) I/2. A given external medium corresponds to a straight line on the diagram, 
since Ro/R v = (gp~v/~o3) I/6 = M I/6, where M depends only on the physical constants of the 
external medium (g is the acceleration of gravity, o is the surface tension on the interface 
between the media, and v I and v 2 are the kinematic viscosities of the liquid drop and the 
external liquid). Because of the large number of dimensionless parameters [3] (we use the 
Reynolds numbers of the internal and external fluids Re I = u2a/v I, Re 2 = u2a/v2 and the Weber 
number We = p2u22a/o) it is difficult to generalize the results. Nevertheless the lines of 
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Fig. 1 

constant Reynolds number and the Froude numbers (Fr = u2/ga) shown in Fig. 1 provide complete 
information on the rise velocity u and show the general features of the flow and the effect 
of the medium inside the drop on its rise. Here curves i, 3, 5, 7 correspond to Re I = 0.4 
and Re 2 = 0.4, 4, 40, i00 and curves 2, 4, 6 correspond to Re I = 60 and Re 2 = 4, 40, I00. 
For given Rel, Re 2 calculations were carried out starting from We = 0, where the drop is a 
sphere. As We increases its shape changes. 

3. Rise of Slightly Deformed Drops. Region I in Fig. I, bounded to the right by the 
solid slanting line, corresponds to spherical and slightly deformed liquid drops where the 
ratio of the horizontal to the vertical diameters is less than 1.03. The quantity Fr is 
practically constant and independent of We for fixed Re I and Re~~ Region I was constructed 
for Re I = 60 and is practically identical to the analogous region for bubbles [I]. For Re I = 
0.4 the upper slanted part of the boundary of region I rotates to the right by 15-20 ~ . 

We first consider the rise of a spherical drop. When I = 0 the Navier-Stokes; equations 
can be solved exactly for Re~ ~ 1 (Hill's spherical vortex [4]) and the solution is indepen- 
dent of the medium inside the drop. Here for We = 0 we have a sphere with a = 2 and the 
boundary condition on the normal component of the stress is satisfied [3]. One would expect 
that the rise of the liquid drop would continue to be independent of the medium inside for 
sufficiently small Re 2 and i > 0. Calculations with Re I = 0.4 and 60 for different We practi- 
cally coincide when Re~ is small: curve 1 in Fig. 1 corresponds to Re 2 = 0.4. There is 
strong vortex motion inside the drop, as shown in Fig. 2 (the solid lines are the stream- 
lines in a coordinate system fixed to the liquid drop and the dashes represent the velocity 
vector over the tube cross section). The maximum velocity inside the liquid drop is com- 
parable to the velocity of the liquid through the narrow gap between the wall of t]he tube 
and the surface of the drop. At R o = 0.i we have M = 3.10 -9 for curve 1 of Fig. i, while the 
value of M for the liquid drop (Mk) varies from i0 "19 for Re z = 60 to 3.10 -z2 for ]Re I = 0.4; 
on the right boundary of region I (R o = 0.8) M = 10 -3 while M k = 2.10 -15 and 10 -6 , respec- 
tively. 

For larger Re 2 the solutions for Re I = 60 and 0.4 are different (curves 2 and 3 for 
Re 2 = 4 in Fig. i). However, there are no significant changes in the structure of the flow 
and the picture is very similar to Fig. 2. At Re 2 = 40 the difference between the curves 
for Rel = 60 and 0.4 (curves 4 and 5 in Fig. i) is still greater and changes to the flow 
structure begin to become noticeable. For example, when Re I = 60 the lengths of the velocity 
vectors near the surface of the drop on both sides are longer than in Fig. 2 and when Re ! = 
0.4 the rate of rotation of the vortex inside the liquid drop is much smaller (the local 
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maximum of the stream function becomes ~0.4). The maximum velocity inside the liquid drop is 
now smaller than the rise velocity (Fig. 3, We = 0.0058, R o = 0.2, R v = 17.5, Fr = 0.074, M = 
10 -13 , M k = 2-10-7). The velocity distribution inside the narrow gap is different: the flow 
of the liquid just outside the surface of the drop is significantly slowed. 

Curves 6 and 7 in Fig. 1 correspond to Re 2 = 100. The relationship between the flows 
for small and large Re I is approximately the same as for Re 2 = 40. The flow for Re I = 60 is 
shown in Fig. 4 (We = 0.024, R o = 0.17, R v = 17.7, Fr = 0.45, M = 1.8.10 -13 , M k = 10"is). 
At R o = 0.I the values of M for Re 2 = 100, Re I = 60 and Re 2 = 40, Re I = 0.4 are practically 
the same. For larger R o (40.2) there are slight differences in the flow structure and the 
values of Ft. Therefore, Figs. 3 and 4 illustrate the effect of the medium inside the drop 
on its rise: M, Re, R~ (and therefore the size of the drop) are approximately the same while 
M k differs by more than eight orders of magnitude. The rise velocity of a liquid drop with 
the smaller value of M k (Fig. 4) is 2.4 times higher than the rise velocity of a liquid drop 
of the same volume with the larger value of M k (Fig. 3). In passing, we point out a simple 
test of the correctness of the parameter Yr. The square root of the ratio of the Froude 
numbers (ratio of the rise velocities) should be equal to the ratio of the Reynolds numbers 
Re 2 of the external liquids if the data correspond to the same point in Fig. i. In our case 
the error is <3.6%, which is within the accuracy of determining Fr by equating the frictional 
force on the surface of the liquid drop to the buoyancy force. 

The fact that the data in region I for constant Re I and Re 2 are practically independent 
of R O (curves 1-7 are parallel to the R a axis) shows that the rise of the drop is determined 
by the viscous forces and does not depend on the surface tension. The capillary forces are 
larger than the force of the dynamical interaction and maintain the spherical shape of the 
drop. 

4. Rise of Deformed Liquid Drops in a Tube. As We increases the liquid drop becomes 
elongated transverse to the direction of rise (region II in Fig. i). The gap between the 
surface of the drop and the wall of the tube narrows, which leads to a greater variation in 
the velocity over the tube cross section. In a viscous medium with sufficiently large M 
(>10 -5 ) this process is "rapidly stabilized" and the presence of the tube wall begins to be 
felt, leading to elongation of the front of the liquid drop (region III) and then elongation 
of its back (region IV). Therefore in region IV the liquid drop is elongated along the tube 
and the gap between its surface and the solid wall widens. Region III, where the deformation 
process of the drop changes, is quite narrow and all of the parameters of a problem are sig- 
nificant here. The lines of constant Reynolds number reach local maxima in this region and 
then decrease monotonically in region IV, again becoming constant for R o > 2. The Fr values 
along these lines decrease with increasing Ra, reach local minima in region IIl, and then 
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begin to increase again. Figure2 (Re I = 0.4, Re 2 = 0.4, We = 0.0048, Fr = 0.0023, R o = i, 

R v = 2.58, M = 3.7"10 -2 , M k = 3.7"10 -~) corresponds to region III. Figure 5 (Re~ = 0.4, 

Re 2 = 0.4, We = 0.ii, Fr = 0.0066, R o = 2.88, R v = 1.82, M = 15.8, M k = 0.016) shows the 
flow in region IV where the lines of constant Rel, Re 2 have become horizontal (see Fig. i). 

The drop has a prolate shape with a blunt nose (it begins to flatten for R o > 2) and an un- 

dulating back. It was not possible to increase R o further: the surface of the drop was found 

to oscillate from iteration to iteration of the calculation. The solutions for different 

values of We with Re I = 60 (Re 2 = 0.4) have the same overall features of the surface defor- 

mation, but lie somewhat lower when R o > 0.8 (see Fig. i). The liquid drop is less elongated 

than for Re I = 0.4 and the motion inside it is more intense. When R o = 2.52 a depression 

appears on the lateral surface of the liquid drop, behind the point of the local maximum of 

the stream function. For higher R o the surface of the drop oscillates from iteration to 

iteration of the calculation and a steady-state solution is not obtained. 

The calculations for Re 2 = 4 with Re I = 60 and 0.4 are shown on the diagram of Fig. 1 

by the parallel curves 2 and 3. This is the region of the hydrodynamic parameters where 
the individual features of the media are the same and show up as the geometry of the liquid 

drop changes (the solutions for curve 3 correspond to liquids with identical dynamical vis- 

cosities). The flows for Re I = 60, We = 0.05 (Fr = 0.023, R o = 1.05, R~ = 5.6, M = 4.4. 

10 -5 , M k ~ i0 -Iz) and Re I = 0.4, We = 0.028 (Fr = 0.014, R o = i, R v = 6.55, M = 1..2-10 -5 , 
M k = 1.2.10 -4 ) are very similar to Fig. 2 with the motion inside the drop somewhat weaker 

for Re I = 0.4 (the maximum of the stream function is 1.16). 

When R o ~ 2 the liquid drop is elongated along the tube. Figure 6 corresponds to Re I = 

60, We = 0.4 (Fr = 0.05, M = 0.01, M k ~ 10 -1~ , R o = 1.98, R v = 4.28) and Fig. 7 to Re I = 0.4, 

We = 0.18 (Fr = 0.022, M = 0.0023, M k = 0.023, R o = 2.05, Rv = 5.65). With further increase 
in We (We = 0.85, R o = 2.57, R v = 3.95, M = 0.075, M k = 10 -9 ) the length of the drop for 
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Re I = 60 remains the same as in Fig. 6, the undulation at the rear of the drop increases, and 
the nose is slightly flattened (as in Fig. 5). There are no striking changes in the flow 
structure. The situation is different for Re I = 0.4: at R o = 2.55 (We = 0.46, Fr = 0.035, 
M = 0.022, M k = 0.22) the liquid drop is significantly elongated, but front and rear are 
little changed. The motion inside the liquid drop decreases and the point of the local maxi- 
mum of the stream function (equal to 0.53) is shifted back. Figure 8 (We = 0.85, Fr = 0.043, 
R o = 3.15, R~ = 4.5, M = 0.11, M k = I.i) shows the flow corresponding to the horizontal limit 
of curve 3 (Fig. i). Part of the lateral surface of the drop is parallel to the tube wall 
and there is a characteristic broadening of the back of the drop. 

In liquids with M < I0 -s rising liquid drops are elongated transverse to the tube in a 
much larger region of We (region II of Fig. i). The lines of constant Re I and Re 2 in the 
region of spherical bubbles differ more strongly (curves 4, 5 and 6, 7 of Fig. i), which 
demonstrates the significant effect of the medium inside the drop on its rise. With increas- 
ing We curves 4, 5 and curves 6, 7 begin to converge. The difference between the Fr values 
on these curves decreases and reaches a minimum in region III, where the deformation process 
changes and the liquid drop begins to elongate along the axis of the tube. Figure 9 (Re I = 
0.4, Re 2 = 40, We = 0.26, Fr = 0.04, R o = 1.84, R v = 21.7, M = 3.6-10 -7 , M k = 3.6"10 -2) shows 
the flow for transition into region IV. The liquid drop becomes wedge-shaped, as in the case 
of a bubble in this region of R o and R v (see Fig. 7b of [1]). The liquid inside the drop is 
practically at rest at the front and rear of the drop and the no-slip condition holds on the 
outer side of the surface, as in the case of a fixed wall. For large R a the surface of the 

drop changes with time. 

The results for Re 2 = i00 with Re I = 60 and 0.4 (curves 6 and 7 in Fig. i) approach with 
increasing R o. The values of Fr on these curves decrease; they differ by ~12% when R o = i. 
Figure i0 shows the flow for Re I = 60, We = 0.19 (Fr = 0.086, Ro = 1.04, Rv = 30.66, M = 1.5- 
10 -9 , M k ~ 10-11). A strong vortex exists inside the liquid drop and outside it there is a 
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quiescent zone near the tube wall. Liquid moves along the surface of the drop, flowing around 
it and creating a jet behind it near the axis. The flow structure strongly recalls the flow 
near a rising bubble [i]. The form of the flow is quite different for Re I = 0.4 (Fig. ii, 
We = 0.17, Fr = 0.066, R o = 1.14, R v = 33.45, M = 1.5.10 -9 , M k = 6.10-3). There is weak vor- 
tex motion inside the liquid drop and the streamlines in the external flow breakaway from the 
back surface of the drop indicating the formation of a quiescent zone behind the drop, which 
may subsequently lead to flow separation. The results of Figs. i0 and ii correspond to ex- 
ternal liquids with similar values of M. The diameters of the drops differ by less than 10%, 
while M k ~ i0 -11 and 6.10 -3 . Therefore Figs. i0 and II illustrate the effect of the medium 
inside the drop on its rise in a given external liquid. 

5. Friction on the Wall of the Tube and Pressure on the Surface of the Drop. The rise 
of a liquid drop in a tube with a different quiescent liquid is accompanied by flow of the 
external liquid downward through the narrow gap between the wall of the tube and the surface 
of the drop. An important function characterizing the efficiency of the rise is the distri- 
bution of friction ~ over the wall of the tube. Since �9 = -2m/Re2, if we know the vorticity 

on the wall we can determine the losses by integrating this relation over the surface of 
the tube. The geometrical interpretation of a definite integral is the area under the curve, 
therefore from a graph of m we can easily estimate the work done in overcoming the friction of 
the liquid against the wall and the contribution of different parts of the tube to the work 
done. 

Since the liquid drop rises in a tube with a quiescent external liquid, the friction 
against the wall is nonzero only at the level of the drop and over a certain distance from it. 
Graphs of m are shown in Fig. 12: curves 1,3 correspond to Figs. 2, 5, and 8. Curve 1 cor- 
responds to a slightly deformed sphere. The m curve is asymmetric about e = ~/2. Behind the 
liquid drop there is a region of positive m, indicating slowing of the liquid. The positive 
and negative peaks increase with increasing Re 2. We compare the values of m in Figs. 3 and 4, 
which correspond to liquid drops of equal volume rising in the same external liquid. The 
minimum values of ~ are -i0 and -7.7. For the dimensional values of m we have, at the nega- 
tive peak 

i 

~o "/-F-~s~ ~___-2 l f~  7,7 
- 1 /  = t,9, 

~0,4 I /  ~0,4 

where the indices on ~ and Fr indicate the value of Re!; the quantity ~' is dimensionless. 
Since ~ ~ p2v2~, we have ~60/T0.4 = 1.9 and the frictional peak for rise of a liquid drop with 
M k z I0 -Is is 1.9 times larger than the peak for a liquid drop with M k z 10 -7 , whereas the 
rise velocity of the first drop is 2.4 times larger than the second. 
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The analogous relation for Figs. i0 and ii gives ~o/Wo.4 ~ 1.37 (in this case the 
graphs of m are close and the peak values are --30 and -25). Here the rise velocities of the 
drops are only slightly different. 

The total losses for rising drops are composed of two terms: friction of the liquid 
against the wall of the tube and against the surface of the liquid drop. For large Re I the 
losses on the liquid drop are negligible and the values of Fr and ~ on the wall, the shape 
of the drop, and the flow structure are similar to the case of a bubble. For small Re I it 
can be seen by comparing Fig. i0 with 11 and Fig. 3 with 4 that the no-slip condition holds 
on the nonmoving (or only slightly moving) part of the boundary. The friction of the liquid 
against the drop is now significant (flow separation is even possible; see Fig. 11) and the 
total losses over the flow become far!go. 

The change in the vorticity ~it~ increasing deformation of the surface of the liquid drop 
can be followed by cemparimg Figs. 2 and 5 and curves 1 and 2 in Fig. 12, which correspond to 
the same values of Re I and Re 2. As the liquid drop elongates along the axis of the tube the 
gap between it and the t~e wall widens and the magnitude of the peak in m drops. If part of 
the surface is parallel to the tube wall then a "shelf" appears on the graph of m. Dips (or 
bumps) on the surface lead to oscillations in ~ (curve 3 of Fig. 12 corresponds to Fig. 8). 
Therefore small distortions in the shape of the drop (changes in the gap width) are reflected 
in the vorticity ~ and hence in the friction �9 over the wall. 

An important hydrodynamic characteristic is the pressure p. The problem of the flow of 
a fluid around a body of given shape can be solved in terms of the variables ~ and m and the 
pressure p does not appear explicitly in the solution. It can be found from the solution for 

and m by fixing p at a certain point in the region of flow. Usually the so-called general- 
ized pressure q (the algebraic sum of p and the gravitational potential) is determined. This 
is sufficient, since gravity plays a passive role in the problem. Pressure deviations only 
show up in comparing the calculated results with the experimental data in a particular liquid 
and may show up as a shift in p by a constant amount. 

In the problem considered here the pressure appears explicitly in the boundary condition 
on the surface of the liquid drop and is found from the initial equations of motion in a 
single iteration cycle. The driving force of the rise process is gravity and the quantity Fr, 
determined by the solution of the problem, appears in the coefficient of this force. There- 
fore, the pressure is important in the balancing of the active forces (Fr is found by balanc- 
ing the buoyancy force against the frictional force of the external liquid against the drop) 
and in maintaining the constant volume of the drop [Pd = (p~ - pg)2a/a, where a is given]. 

Graphs of the pressure over the surface of a spherical liquid drop are shown in Fig. 13 
for Re I = 60, Re 2 = 0.4, We = 0.0001 (Ro = 0.16, R v = 2.5). The flow in this case is similar 
to Fig. 2. Here q and p are the generalized pressure and pressure outside the surface of the 
drop and Pk is the pressure on the inner side F of the drop surface. The Froude number is 
small, therefore the gravitational potential (~R cos 8/Fr) makes the dominant contribution to 
q; note that p is nonmonotonic. The velocity gradient is large inside the narrow gap (liquid 
is accelerated in the converging part and decelerated in the diverging part) and the function 
p has a local maximum and minimum. The pressure Pk inside the liquid drop corresponds to the 
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hydrostatic pressure, even though the flow inside the drop is significant. This is a conse- 
quence of the smallness of the parameter Pl/P~, which is a coefficient in the dynamical cor- 
rection to Pk" The pressure graphs for Re I = 0.4, Re 2 = 0.4, We = 0.0001 are practically the 
same as in Fig. 13, except for the initial and final segments of the curves, where the oscil- 
lation amplitude is slightly larger. 

Figures 14 and 15 correspond to the data of Figs. 3 and 4 for different spherical drops 
of the same volume rising in the same external liquid. The pressure graphs for the more 
viscous drop resemble Fig. 13, but p is of order Pk because of the slowing of the external 
liquid near the drop. Figure 15 corresponds to the case of a bubble: the friction over the 
surface is small and the pressure increases toward the back. The function Pk is small and 
practically constant except near 0 = ~/2, where it changes sign. 

Deformation of the surface and the narrowing of the gap leads to a redistribution of the 
pressure and to narrow peaks in the gap region (Fig. 16 corresponds to the data of Fig, i0). 
These peaks become smoothed out for a more viscous drop. Therefore Figs. i0, ii, and 16 
demonstrate the effect of the medium inside the drop on the pressure during its rise. 

Elongation of the liquid drop along the axis of the tube leads to changes in the struc- 
ture of the pressure distribution. The nonmonotonic region of p spreads over the entire 
lateral surface of the drop and the oscillation amplitude decreases. The function Pk is simi- 
lar to p. Significant differences exist only near the front of the drop. The pressure graphs 
shown in Fig. 17 correspond to the data of Fig. 5. The nonmonotonic behavior of Pk and p near 
the front of the drop occurs because two moving liquids (inside and outside the drop) meet in 
this region and the spread along the surface, flattening the back of the drop if their dynam- 
ical heads are approximately the same. 

6. Discussion of the Results, The calculations show that for Re I = 60 the deformation 
behavior of the liquid drop and the values of Fr are similar to the case of a bubble [I]. The 
calculations cover the region of M k from i0 -IG (Re 2 = i00) with We = 0,01 (sphere) to i0 -11 
with We = 0.19 (deformed liquid drop) and from 10 -19 (Re~ = 0.4) with We = 0.0001 to 10 -11 
with We = 0.01; M ~ I0 -14 and 10 -9 for Re 2 = i00 and ~10 -8 and i0 for Re 2 = 0.4. Solutions 
for Re I > 60 in the interval of We (or R o) considered here will correspond to liquid drops 
with still smaller values of M k. Since Pl/P2 is fixed, this implies smaller viscosities and 
therefore less friction on the surface F. 

Solutions for Re I = 0.4 correspond to the rise of more viscous liquid drops with M k 
values from i0 -Is (Re 2 = I00) with We = 0.02 (sphere) to 0.006 with We = 0.17 (deformed drop) 
and from ~i0 -12 (Re 2 = 0.4) with We = 0.00004 to 0.16 with We = 0.ii; the parameter M varies 
from 10 -16 (spherical drop) for Re 2 = I00 to M = 16 (elongated torpedo shape) for Re 2 = 0.4~ 

Larger values of M k than discussed above correspond to solutions with Re I < 0.4, i.e., 
more viscous liquid drops (in the limit of a nonmoving liquid) with the velocity of the ex- 
ternal liquid equal to zero at the surface of the drop. Solutions corresponding to fixed Re 2 
with Re I < 0.4 lie somewhat higher on Fig. 1 than for Re I = 0.4. Therefore, by using Fig. 1 
and the diagrams of [i] for bubbles the lines of constant Froude number for particular liquid 
drops can be constructed and the behavior of the rise as a function of the external liquid can 
be determined. The dimensions of the liquid drops for which solutions can be obtained reach 
2-3 times the capillary constant of the external liquid. 
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In the region of spherical drops and for Re 2 < 1 the rise process is independent of the 
medium inside the drop and the hydrodynamic parameter Ro: the lines of constant Re I and Re 2 
and the lines of constant Fr are parallel to the R a axis. Two types of behavior are observed 
in the region of deformed drops. When Re 2 < i (or for liquids with M > 10 -3 ) this "self- 
similar" behavior breaks down and curve 1 in Fig. 1 bifurcates. For large Re 2 (for liquids 
with M < 10 -6 ) deformation of the drop leads to a reduced sensitivity of the rise velocity to 
the features of the medium inside the drop: the velocities are close to drops with M k dif- 
fering by 5-7 orders of magnitude. Between these two classes of liquids there is an inter- 
mediate zone with M from ~10 -6 to 10 -4 , where the lines of constant Re I and Re 2 are practi- 
cally parallel (curves 2 and 3). 

The convergence of curves 4 and 5 on the one hand and 6 and 7 on the other can be ex- 
plained by the fact that as the drop becomes more deformed the secondary flow has closed 
streamlines near the wall of the tube behind the drop and at the front of the drop near its 
surface. The quiescent zones wipe out the features of the flow determined by the medium 
inside the drop and the rise velocity becomes independent of the liquid inside the drop. 

The calculations show that if M k of the drop is smaller than M of the external liquid 
then the flow is similar to that near a rising bubble; in the opposite case the motion near 
the interface between the two media is significantly slowed. 

For bubbles rising in a tube it has been shown [5] that in the region where the bubbles 
become elongated along the axis of the tube the rise is like that of an elongated torpedo 
(X = 0.8), i.e., the rise velocity does not depend on the size. Since the diagrams are 
qualitatively and quantitatively similar for bubbles and liquid drops, it follows that in 
region IV of Fig. 1 drops whose equivalent radius is larger than the capillary constant 6 o 
rise in hindered conditions as elongated projectiles if M > 10 -4 . In liquids with M < 10 -4 
this regime occurs for drops with radii larger than 26 o. 

The motion of the medium inside the drop does not change the right boundary of region 
III, where the nature of the deformation changes, from the case of a bubble. The left bound- 
ary is shifted so that region III becomes narrower. Hence the motion of the medium inside 
a bubble leads to a widening of the region of spherical bubbles in liquids with large M. 
Therefore, in tubes with R k < 6 o an increase in the size of the bubble can lead to stoppage 
because of its "rigidity." The narrowing of region III and the shifting of its upper portion 
to the right may also explain the stopping of bubbles in capillary tubes for liquids with 
small M [6]: the bubbles become elongated transverse to the tube and are "blocked." 

The value for which the change in the deformation process increases significantly is 
about an order of magnitude larger for liquids than for bubbles (the slanted part of region 
IZI). 

In summary, the motion of the medium inside a bubble (small Pl/P2) significantly af- 
fects its rise velocity in a tube, as well as the flow structure of the liquid near the bub- 
ble. Calculations for Pl/P2 = 0.5 show that the data for constant Re i and Re 2 are shifted 
upward on the (R o, R v) diagram relative to the data for Pl/P2 = 0.i and the same values of 
Re i and Re 2 [3]. The Fr values are smaller and the deformation behavior of the liquid drop 
remains as before. Therefore the flow regime diagram obtained from the calculations gives a 
complete picture of the processes accompanying the hindered rise of a liquid drop up to the 
limit of the "elongated torpedo regime." 
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